环球热头条丨初二数学上册:全等三角形常考题型+解题思路整理

2022-11-30 21:02:23 来源: 中考网

全等三角形的性质


【资料图】

对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。

寻找对应边和对应角,常用到以下方法:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

(3)有公共边的,公共边常是对应边。

(4)有公共角的,公共角常是对应角。

(5)有对顶角的,对顶角常是对应角。

(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。

解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。

全等三角形的判定方法

(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等。

(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等。

(3)边边边定理(SSS):三边对应相等的两个三角形全等。

(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。

(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等。

全等三形的应用

运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。

【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。

找全等三角形的方法

(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;

(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;

(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;

(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法

①延长中线构造全等三角形;

②利用翻折,构造全等三角形;

③引平行线构造全等三角形;

④作连线构造等腰三角形。

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1】如图,△ABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

题意分析】本题考查“等腰三角形的三线合一”定理的应用。

解题思路】要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和“等腰三角形的三线合一”定理结合起来。

解答过程

点拨】等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2】如图,已知△ABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:△ABC是等腰三角形。

题意分析】本题考查全等三角形常见辅助线的知识。

解题思路】在证明三角形的问题中,特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了“AD又是BC边上的中线”这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程

点拨】题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

例3】已知,如图,AC平分∠BAD,CD=CB, AB>AD。求证:∠B+∠ADC=180°。

题意分析】本题考查角平分线定理的应用。

解题思路】因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。

解答过程

点拨

①关于角平行线的问题,常用两种辅助线:

②见中点即联想到中位线。

(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

例4】如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF,求证:DE=DF。

题意分析】本题考查全等三角形常见辅助线的知识:作平行线。

解题思路】因为DE、DF所在的两个三角形△DEB与△DFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换。过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。

解答过程

点拨】此题的辅助线还有以下几种作法:

归纳】添加辅助线的目的在于构造全等三角形,而不同的添加方法实际是从不同途径来实现线段的转移的。不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。

(5)截长法与补短法:具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例5】如图甲,AD// BC,点E在线段AB上,∠ADE=∠CDE,∠DCE= ∠ECB。求证:CD=AD+BC。

题意分析】本题考查全等三角形常见辅助线的知识:截长法或补短法。

解题思路】结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程

证明:在CD上截取CF=BC,如图乙

end

声明:本文内容来源于网络,转载请联系原出处。 初三研究中心尊重版权,如有侵权问题,请及时与管理员联系处理。

点击 "阅读原文" 查看2022中考专题

编辑:Edt_58

最近更新

牛津大学发布2023年度录取报告!录取3271人_全球观焦点
【时快讯】创新高!深圳2023年高中阶段学校招生12.45万人
哥大宣布永久退出US News美国大学排名评选!
天天关注:深圳再添一国际高中
北京将新建一所一贯制民办国际化学校
新疆2022年一级造价工程师(补考)合格人员名单公示(共709人)
呼和浩特2022年初中级经济师资格证书发放通知
每日视点!重庆2022年一级造价工程师(补考)资格复核通知
兴安盟2022年初中级经济师考试合格人员证书领取通知
福建2022年一级造价工程师(补考)考后资格核查通知 热文
2023山西省运城河津市教育人才引进公告-信息
2023上海信息技术学校拟聘人员公示
2023湖北服装表演高考分数线(含2021-2022历年)
即时:2023山东编导本科分数线多少分(含2021-2022历年)
2023赣南医学院招生计划-各专业招生人数是多少-天天观察
2023湖北美术生本科分数线多少分(含2021-2022年)
2023湖北艺术生本科分数线多少分(含2021-2022年)
世界观察:印度尼西亚很快要禁止这一金属原料的出口
9.21正式发售:《收获日3》开发者日志曝光 共通社群建立-看热讯
【天天时快讯】2023年5月国内VA、VE出口量环比增长,VC出口量同比环比下降
快手官方不给热度怎么办?如何增加快手流量? 全球新动态
安徽太湖:“典”亮美好生活 营造浓厚学法氛围_播资讯
【世界时快讯】浙江水利水电学院举行辅导员素质能力大赛专题培训
今日观点!精准发力,靶向引才——四川农业大学大力加强辅导员及教辅队伍建设
视讯!云南民族大学舞龙队在云南省第二届龙狮争霸赛上喜获佳绩
今头条!云南民族大学首届学生思想政治教育工作研讨会召开
环球短讯!喜报!浙江水利水电学院学子在第五届全国大学生桥梁设计大赛中斩获佳绩
知名歌手演唱会观众齐喊“开空调”!负责人道歉|环球热资讯
口腔医院借丁真照片宣传正畸被罚-世界播报
环球热头条丨江西高考状元出炉,高考726分语文答题卡曝光,看后令人拍手叫绝