双曲线的通径公式是:(2b^2)/a。双曲线的通径是过焦点,垂直于实轴的弦,通径有两条,长为2b²/a。过双曲线的焦点与双曲线的实轴垂直的直线被双曲线截得的线段的长,称为双曲线的通径。(文章内容来源于网络,仅供参考)
双曲线的概念
定义1:平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点
(资料图片仅供参考)
定义2:平面内,到给定一点及一直线的距离之比为大于1的常数的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线
定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。
定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。
双曲线的通径是什么
双曲线的通径是过焦点,垂直于实轴的弦,通径有两条,长为2b²/a。椭圆方程为x²/a²+y²/b²=1,所以得到y=±b²/a,而通径是正负的两段长度加起来,所以是2b²/a。
椭圆、双曲线的通径长均为|AB|=2b^2/a。(其中a是长轴或实轴的1/2,b是短轴或虚轴的1/2,不论椭圆或双曲线的焦点在x轴还是y轴都有这个结论)。
双曲线的性质
1、取值区域:
x≥a,x≤-a或者y≥a,y≤-a
2、对称性:
关于坐标轴和原点对称。
3、顶点:
A(-a,0)A’(a,0)AA’叫做双曲线的实轴,长2a;B(0,-b)B’(0,b)BB’叫做双曲线的虚轴,长2b。
4、渐近线:
横轴:y=±(b/a)x竖轴:y=±(a/b)x
5、离心率:
e=c/a取值范围:(1,+∞)
6、双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率。
7、双曲线焦半径公式:
圆锥曲线上任意一点到焦点距离。过右焦点的半径r=|ex-a|;过左焦点的半径r=|ex+a|
8、等轴双曲线
双曲线的实轴与虚轴长相等,2a=2b e=√2。