三月天的复习,是刷更多的题,还是该关注什么? 每日播报

2023-03-08 10:41:25 来源: 吴国平教育研究社

什么是分类讨论?

因题目已知条件存在一些不确定因素,解答无法用统一的方法或者结论不能给以统一表述的数学问题,我们往往将问题划分为若干类,或若干个局部问题来解决。在全国各地中考数学中,分类讨论有关的试题一直是考试热点,题型有选择题、填空题和解答题,这给我们传递了一个信号,分类讨论依然是2023年中考数学的重难点和热点。


(资料图)

分类讨论题难度大,出题角度多,可以很好地考查同学们思维的逻辑性、缜密性、系统性等。不过,纵观历年中考数学真题,发现很多考生面对分类讨论的时候,容易漏解,从而丢失分数。

因此,为了能更好帮助大家应对中考复习,今天我们一起简单来聊聊分类讨论有关的解题方法和题型。

【解题方法一】

对问题进行分类讨论时,必须按同一标准分类,且做到不重不漏。解题中,分类讨论一般分为四步:

第一,确定讨论的对象以及讨论对象的取值范围;

第二,正确选择分类标准,合理分类;

第三,逐类、逐段分类讨论;

第四,归纳并做出结论。

分类讨论有关中考试题分析:

如图,直线y=﹣3x/4+3与x轴交于点C,与y轴交于点B,抛物线y=ax²+3x/4+c经过B、C两点.

(1)求抛物线的解析式;

(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?

(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

考点分析:

二次函数综合题.

题干分析:

(1)首先根据直线y=﹣3x/4+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax²+3x/4+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.

(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣3x²/8+3x/4+3),则点M的坐标是(x,﹣3x/4+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.

(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.

解题反思:

(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.

(2)此题还考查了函数解析式的求法,以及二次函数的最值的求法,要熟练掌握.

(3)此题还考查了三角形的面积的求法,要熟练掌握.

【解题方法二】

引起分类讨论的七种基本形态。并非所有的数学问题都需要进行分类讨论,但若涉及以下七种情况,常常需要进行分类讨论使问题简单化。

(1)概念分段定义。像绝对值这样分段定义的概念,在中学数学中还有直线的斜率等,当这些概念出现时,一般要进行分类讨论。

(2)公式分段表达。在解决数学问题时,常常要用到数学公式,若该公式是分段表达的,那么在应用到这些公式时,需分类讨论。

(3)实施某些运算引起分类讨论。在解决数学问题时,不论是化简、求值还是论证,常常要进行运算,若在不同条件下实施这些运算时会得到不同结果时,会引起分类讨论。

(4)图形位置不确定。如果图形的位置不确定,常常会引起分类讨论,因此,如果图形可能处于不同位置并且影响问题的结果时,首先要有分类讨论的意识,其次要全面考察,分析各种可能的位置关系,然后合理分类讨论,防止漏解。

(5)图形的形状不同。当图形的形状不确定时,要对各种可能出现的形状进行分析讨论。

(6)字母系数参与引起分类讨论。字母系数的出现,常常会使问题出现多种不同的情况,从而影响问题结果,因此引起分类讨论。

(7)条件不唯一引起分类讨论。由于条件不唯一,可能引起方程类型不确定,曲线种类不确定,位置关系不确定,形状不确定等出现,需要对不同情况合理分类,正确讨论。

关键词:
编辑:Edt_58

最近更新

河南城建学院召开2023年重大项目建设推进暨调研座谈会 环球热点评
阿坝师范学院顺利召开2022级学生军训动员大会
热文:渤海大学举办校园开放日暨本科招生咨询会
世界热讯:河北民族师范学院 第九届“互联网+”大学生创新创业大赛校赛圆满落幕
甘肃省委宣传部专题调研指导陇东学院校报出版工作
江西高考状元出炉,超高分数破纪录,家庭背景曝光还真不是普通人 环球即时看
密歇根大学被控伪造学生成绩,可能被取消大学资质?
卡内基梅隆大学十年间“扩招”近2000名中国学生!
薪火相传!陕西这所民办院校,名气不大,实力却很硬核
焦点讯息:青海2023一年级建造师考试报名流程
青海2023一级建造师考试报名时间:6月30日-7月10日_每日聚焦
江苏2023年度一级建造师资格考试考务工作的通知
青海2023年度一级建造师资格考试考务工作的通知
为什么不建议自考新生盲目追求热门专业?
2023杨凌职业技术学院招生计划-各专业招生人数是多少 头条焦点
2023西安工商学院招生计划-各专业招生人数是多少
2023山东航空服务本科分数线多少分
天天视点!2023湖南女子学院招生计划-各专业招生人数是多少
2023贵州高考志愿有哪些批次
愿你带着欧亚DNA远行——西安欧亚学院会计学院2023届毕业典礼暨学士学位授予仪式_世界热资讯
访企拓岗促就业|广州珠江职业技术学院一行赴惠州市赢合科技有限公司洽谈校企合作事宜
牛津大学发布2023年度录取报告!录取3271人_全球观焦点
【时快讯】创新高!深圳2023年高中阶段学校招生12.45万人
哥大宣布永久退出US News美国大学排名评选!
天天关注:深圳再添一国际高中
北京将新建一所一贯制民办国际化学校
新疆2022年一级造价工程师(补考)合格人员名单公示(共709人)
呼和浩特2022年初中级经济师资格证书发放通知
每日视点!重庆2022年一级造价工程师(补考)资格复核通知
兴安盟2022年初中级经济师考试合格人员证书领取通知