天天微速讯:初二数学下册:几何常见辅助线口诀汇总

2023-06-01 05:54:48 来源: 中考网

重要通知:中考君将在2023中考期间持续为大家播报中考时间、中考真题、中考查分时间及入口、各地中考分数线等重要信息,敬请关注!


(资料图片)

几何常见辅助线口诀

三角形

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形

平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

由线段和差想到的辅助线

截长补短法

AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。

由中点想到的辅助线

一、中线把三角形面积等分

如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。

分析:利用中线分等底和同高得面积关系。

二、中点联中点得中位线

如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。

分析:联BD取中点联接联接,通过中位线得平行传递角度。

三、倍长中线

如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。

分析:倍长中线得到全等易得。

四、RtΔ斜边中线

如图,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。

分析:取AB中点得RTΔ斜边中线得到等量关系。

由全等三角形想到的辅助线

一、倍长过中点得线段

已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是。

分析:利用倍长中线做。

二、截长补短

如图,在四边形ABCD中,BC>BA,AD=CD,BD平分 ,求证:∠A+∠C=180

分析:在角上截取相同的线段得到全等。

三、平移变换

如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE

分析:将△ACE平移使EC与BD重合。

四、旋转

正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数

分析:将△ADF旋转使AD与AB重合。全等得证。

由梯形想到的辅助线

一、平移一腰

所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17. 求CD的长。

分析:利用平移一腰把梯形分割成三角形和平行四边形。

二、平移两腰

如图,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。

分析:利用平移两腰把梯形底角放在一个三角形内。

三、平移对角线

已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积。

分析:通过平移梯形一对角线构造直角三角形求解。

四、作双高

在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。

分析:作梯形双高利用勾股定理和三角形边边边的关系可得。

五、作中位线

(1)如图,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:EF//AD

分析:联DF并延长,利用全等即得中位线。

(2)在梯形ABCD中,AD∥BC, ∠BAD=90°,E是DC上的中点,连接AE和BE,求∠AEB=2∠CBE。

分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。

end

声明:本文内容来源于网络,转载请联系原出处。 初三研究中心尊重版权,如有侵权问题,请及时与管理员联系处理。

点击 "阅读原文" 查看2023中考专题

关键词:
编辑:Edt_58

最近更新

河南城建学院召开2023年重大项目建设推进暨调研座谈会 环球热点评
阿坝师范学院顺利召开2022级学生军训动员大会
热文:渤海大学举办校园开放日暨本科招生咨询会
世界热讯:河北民族师范学院 第九届“互联网+”大学生创新创业大赛校赛圆满落幕
甘肃省委宣传部专题调研指导陇东学院校报出版工作
江西高考状元出炉,超高分数破纪录,家庭背景曝光还真不是普通人 环球即时看
密歇根大学被控伪造学生成绩,可能被取消大学资质?
卡内基梅隆大学十年间“扩招”近2000名中国学生!
薪火相传!陕西这所民办院校,名气不大,实力却很硬核
焦点讯息:青海2023一年级建造师考试报名流程
青海2023一级建造师考试报名时间:6月30日-7月10日_每日聚焦
江苏2023年度一级建造师资格考试考务工作的通知
青海2023年度一级建造师资格考试考务工作的通知
为什么不建议自考新生盲目追求热门专业?
2023杨凌职业技术学院招生计划-各专业招生人数是多少 头条焦点
2023西安工商学院招生计划-各专业招生人数是多少
2023山东航空服务本科分数线多少分
天天视点!2023湖南女子学院招生计划-各专业招生人数是多少
2023贵州高考志愿有哪些批次
愿你带着欧亚DNA远行——西安欧亚学院会计学院2023届毕业典礼暨学士学位授予仪式_世界热资讯
访企拓岗促就业|广州珠江职业技术学院一行赴惠州市赢合科技有限公司洽谈校企合作事宜
牛津大学发布2023年度录取报告!录取3271人_全球观焦点
【时快讯】创新高!深圳2023年高中阶段学校招生12.45万人
哥大宣布永久退出US News美国大学排名评选!
天天关注:深圳再添一国际高中
北京将新建一所一贯制民办国际化学校
新疆2022年一级造价工程师(补考)合格人员名单公示(共709人)
呼和浩特2022年初中级经济师资格证书发放通知
每日视点!重庆2022年一级造价工程师(补考)资格复核通知
兴安盟2022年初中级经济师考试合格人员证书领取通知